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Stacks

Definition (Stack)
A stack is a list that operates under the principle “last in, first out”
(LIFO). New elements are pushed onto the stack. Old elements are
popped off the stack.

To enforce the LIFO principle, we use a list and push and pop at
the same end.
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Stack Constructors

Stack Constructors
Stack();
Stack(const Stack& s);

Stack() constructs an empty stack.
Stack(Stack&) constructs a copy of the specified stack.
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Stack Inspectors

Stack Inspectors
T top() const;
int size() const;
bool isEmpty() const;

top() gets a copy of the element at the top of the stack (but does
not remove it).
size() gets the number of elements in the stack.
isEmpty() determines whether the stack is empty.

Robb T. Koether (Hampden-Sydney College) Stacks and their Applications Fri, Mar 16, 2018 7 / 38



Stack Mutators

Stack Mutators
void push(const T& value);
T pop();
void makeEmpty();

push() pushes the specified value onto the top of the stack.
pop() pops and returns the element off the top of the stack.
makeEmpty() makes the stack empty.
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Other Stack Member Functions

Other Stack Member Functions
bool isValid() const;

isValid() determines whether the stack has a valid structure.
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Other Stack Functions

Other Stack Functions
istream& operator>>(istream& in, Stack& s);
ostream& operator<<(ostream& out, const Stack& s);

operator>>() reads a Stack object from the input stream.
operator<<() writes a Stack object to the output stream.
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Implementation of Stacks

Which push and pop functions should we use?
pushFront() and popFront(), or
pushBack() and popBack().

Choose a List class for which pushing and popping at one end will
be efficient.
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The Input Facilitator

One must be careful when reading a stack.
{10, 20, 30, 40, 50}

As the values are read from left to right, they should be pushed
onto the stack (at one end or the other).
Which end, left or right, is the “top” of the stack? (It matters.)
When we display the stack, it should look the same regardless of
the kind of List we used.
Do we need to write new input() and/or output() functions?
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Handling Function Calls

When a function is called, the program
Pushes the values of the parameters.
Pushes the address of the next instruction (to which the function
should return later).
Allocates space on the stack for the local variables.
Branches to the first line in the function.
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Handling Function Calls

Other Stuff

The Stack

Begin with the 
current stack
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Handling Function Calls

When a function returns, the program
Pops the values of the local variables.
Pops the return address and stores it in the IP register.
Pops the parameters.

The stack has now been returned to its previous state.
Execution continues with the instruction in the IP register.
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Infix Notation

An infix expression is an arithmetic expression in which the binary
operators are written in between the operands.
For example, to add 3 and 4, we write

3 + 4.
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Postfix Expressions

In a postfix expression, the operator is written after the operands.
For example, to add 3 and 4, we write

3 4 + .

The infix expression 2 ∗ 3 + 4 ∗ 5 would be written as

2 3 ∗ 4 5 ∗+

in postfix notation.
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Prefix Expressions

In a prefix expression, the operator is written before the operands.
For example, to add 3 and 4, we write

+ 3 4.

The infix expression 2 ∗ 3 + 4 ∗ 5 would be written as

+ ∗ 2 3 ∗ 4 5

in prefix notation.
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Fully Parenthesized Infix Expressions

With infix expressions, the operations are not necessarily
performed from left to right.

Infix expressions may require parentheses to specify the order of
operation.
Precedence and associativity rules allow us to omit some of the
parentheses.
A fully parenthesized expression requires no precedence or
associativity rules.
In a fully parenthesized expression, there is a pair of parentheses
for every operator.
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Examples

The expression 1 + 2 ∗ 3 would be fully parenthesized as

(1 + (2 ∗ 3)).

The expression 2 ∗ 3 + 4/5 − 6 would be fully parenthesized as

(((2 ∗ 3) + (4/5))− 6).
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Infix Expression Evaluation

We may use a pair of stacks to evaluate a fully parenthesized infix
expression.
The expression contains four types of token:

Left parenthesis (
Right parenthesis )
Number, e.g., 123
Operator +, −, ∗, /

Robb T. Koether (Hampden-Sydney College) Stacks and their Applications Fri, Mar 16, 2018 26 / 38



Infix Expression Evaluation

To evaluate the expression we need a stack of numbers and a
stack of operators.
Read the tokens from left to right and process them as follows:

Token Action
Left parenthesis No action
Number Push the number onto the number stack
Operator Push the operator onto the operator stack

Right Parenthesis

1. Pop two numbers off the number stack
2. Pop one operator off the operator stack
3. Perform the operation on the numbers
4. Push the result onto the number stack
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Example

Use the algorithm to evaluate the expression

(((2 ∗ 5) + (6/3))− 8)
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Example

Token Number Stack Operator Stack

(
(
(
2 2
∗ 2 ∗
5 2 5 ∗
) 10
+ 10 +
( 10 +
6 10 6 +
/ 10 6 + /
3 10 6 3 + /
) 10 2 +
) 12
− 12 −
8 12 8 −
) 4

Begin with an empty stack
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Infix Expression Evaluation

Run the program InfixEvalFullParen.cpp.
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Postfix Expression Evaluation

Example (Postfix Expressions)
Expression: 3 4 + 5 6 + ∗.
Left operand of ∗ is 3 4 +.
Right operand of ∗ is 5 6 +.

In postfix expressions, parentheses are never needed!
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Postfix Expression Evaluation

To evaluate a postfix expression we need a stack of numbers.
Read the tokens from left to right and process them as follows:

Token Action
Number Push the number onto the number stack

Operator

1. Pop two numbers off the number stack
2. Pop one operator off the operator stack
3. Perform the operation on the numbers
4. Push the result onto the number stack
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Postfix Expression Evaluation

Example (Postfix Expressions)
The fully parenthesized infix expression

(((2 ∗ 5) + (6/3))− 8)

can be written as
2 ∗ 5 + 6/3 − 8

As a postfix expression, it is 2 5 ∗ 6 3 / + 8 −
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Example

Token Number Stack
2 2

5 2 5
∗ 10
6 10 6
3 10 6 3
/ 10 2
+ 12
8 12 8
− 4

2 5 ∗ 6 3 / + 8 −
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Postfix Expression Evaluation

Run the program PostfixEvaluator.cpp.
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Assignment

Assignment
Read Sections 18.1 - 18.2, 18.7 - 18.8.
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