
Stacks and their Applications
Lecture 23

Sections 18.1 - 18.2

Robb T. Koether

Hampden-Sydney College

Fri, Mar 16, 2018

Robb T. Koether (Hampden-Sydney College) Stacks and their Applications Fri, Mar 16, 2018 1 / 38

1 Stacks

2 The Stack Interface

3 Stack Applications
Function Calls
Infix, Postfix, and Prefix Notation
Infix Expression Evaluation
Postfix Expressions

4 Assignment

Robb T. Koether (Hampden-Sydney College) Stacks and their Applications Fri, Mar 16, 2018 2 / 38

Outline

1 Stacks

2 The Stack Interface

3 Stack Applications
Function Calls
Infix, Postfix, and Prefix Notation
Infix Expression Evaluation
Postfix Expressions

4 Assignment

Robb T. Koether (Hampden-Sydney College) Stacks and their Applications Fri, Mar 16, 2018 3 / 38

Stacks

Definition (Stack)
A stack is a list that operates under the principle “last in, first out”
(LIFO). New elements are pushed onto the stack. Old elements are
popped off the stack.

To enforce the LIFO principle, we use a list and push and pop at
the same end.

Robb T. Koether (Hampden-Sydney College) Stacks and their Applications Fri, Mar 16, 2018 4 / 38

Outline

1 Stacks

2 The Stack Interface

3 Stack Applications
Function Calls
Infix, Postfix, and Prefix Notation
Infix Expression Evaluation
Postfix Expressions

4 Assignment

Robb T. Koether (Hampden-Sydney College) Stacks and their Applications Fri, Mar 16, 2018 5 / 38

Stack Constructors

Stack Constructors
Stack();
Stack(const Stack& s);

Stack() constructs an empty stack.
Stack(Stack&) constructs a copy of the specified stack.

Robb T. Koether (Hampden-Sydney College) Stacks and their Applications Fri, Mar 16, 2018 6 / 38

Stack Inspectors

Stack Inspectors
T top() const;
int size() const;
bool isEmpty() const;

top() gets a copy of the element at the top of the stack (but does
not remove it).
size() gets the number of elements in the stack.
isEmpty() determines whether the stack is empty.

Robb T. Koether (Hampden-Sydney College) Stacks and their Applications Fri, Mar 16, 2018 7 / 38

Stack Mutators

Stack Mutators
void push(const T& value);
T pop();
void makeEmpty();

push() pushes the specified value onto the top of the stack.
pop() pops and returns the element off the top of the stack.
makeEmpty() makes the stack empty.

Robb T. Koether (Hampden-Sydney College) Stacks and their Applications Fri, Mar 16, 2018 8 / 38

Other Stack Member Functions

Other Stack Member Functions
bool isValid() const;

isValid() determines whether the stack has a valid structure.

Robb T. Koether (Hampden-Sydney College) Stacks and their Applications Fri, Mar 16, 2018 9 / 38

Other Stack Functions

Other Stack Functions
istream& operator>>(istream& in, Stack& s);
ostream& operator<<(ostream& out, const Stack& s);

operator>>() reads a Stack object from the input stream.
operator<<() writes a Stack object to the output stream.

Robb T. Koether (Hampden-Sydney College) Stacks and their Applications Fri, Mar 16, 2018 10 / 38

Implementation of Stacks

Which push and pop functions should we use?
pushFront() and popFront(), or
pushBack() and popBack().

Choose a List class for which pushing and popping at one end will
be efficient.

Robb T. Koether (Hampden-Sydney College) Stacks and their Applications Fri, Mar 16, 2018 11 / 38

The Input Facilitator

One must be careful when reading a stack.
{10, 20, 30, 40, 50}

As the values are read from left to right, they should be pushed
onto the stack (at one end or the other).
Which end, left or right, is the “top” of the stack? (It matters.)
When we display the stack, it should look the same regardless of
the kind of List we used.
Do we need to write new input() and/or output() functions?

Robb T. Koether (Hampden-Sydney College) Stacks and their Applications Fri, Mar 16, 2018 12 / 38

Outline

1 Stacks

2 The Stack Interface

3 Stack Applications
Function Calls
Infix, Postfix, and Prefix Notation
Infix Expression Evaluation
Postfix Expressions

4 Assignment

Robb T. Koether (Hampden-Sydney College) Stacks and their Applications Fri, Mar 16, 2018 13 / 38

Outline

1 Stacks

2 The Stack Interface

3 Stack Applications
Function Calls
Infix, Postfix, and Prefix Notation
Infix Expression Evaluation
Postfix Expressions

4 Assignment

Robb T. Koether (Hampden-Sydney College) Stacks and their Applications Fri, Mar 16, 2018 14 / 38

Handling Function Calls

When a function is called, the program
Pushes the values of the parameters.
Pushes the address of the next instruction (to which the function
should return later).
Allocates space on the stack for the local variables.
Branches to the first line in the function.

Robb T. Koether (Hampden-Sydney College) Stacks and their Applications Fri, Mar 16, 2018 15 / 38

Handling Function Calls

Other Stuff

The Stack

Begin with the
current stack

Robb T. Koether (Hampden-Sydney College) Stacks and their Applications Fri, Mar 16, 2018 16 / 38

Handling Function Calls

Other Stuff

The Stack

Function
Parameters

Push the function
parameters

Robb T. Koether (Hampden-Sydney College) Stacks and their Applications Fri, Mar 16, 2018 16 / 38

Handling Function Calls

Other Stuff

The Stack

Function
Parameters

Return
Address

Push the return
address

Robb T. Koether (Hampden-Sydney College) Stacks and their Applications Fri, Mar 16, 2018 16 / 38

Handling Function Calls

Other Stuff

The Stack

Function
Parameters

Return
Address

Local
Variables

Push the local
variables

Robb T. Koether (Hampden-Sydney College) Stacks and their Applications Fri, Mar 16, 2018 16 / 38

Handling Function Calls

When a function returns, the program
Pops the values of the local variables.
Pops the return address and stores it in the IP register.
Pops the parameters.

The stack has now been returned to its previous state.
Execution continues with the instruction in the IP register.

Robb T. Koether (Hampden-Sydney College) Stacks and their Applications Fri, Mar 16, 2018 17 / 38

Handling Function Calls

Other Stuff

The Stack

Function
Parameters

Return
Address

Pop the local
variables

Robb T. Koether (Hampden-Sydney College) Stacks and their Applications Fri, Mar 16, 2018 18 / 38

Handling Function Calls

Other Stuff

The Stack

Function
Parameters

Pop the return
address

Robb T. Koether (Hampden-Sydney College) Stacks and their Applications Fri, Mar 16, 2018 18 / 38

Handling Function Calls

Other Stuff

The Stack

Pop the function
parameters

Robb T. Koether (Hampden-Sydney College) Stacks and their Applications Fri, Mar 16, 2018 18 / 38

Outline

1 Stacks

2 The Stack Interface

3 Stack Applications
Function Calls
Infix, Postfix, and Prefix Notation
Infix Expression Evaluation
Postfix Expressions

4 Assignment

Robb T. Koether (Hampden-Sydney College) Stacks and their Applications Fri, Mar 16, 2018 19 / 38

Infix Notation

An infix expression is an arithmetic expression in which the binary
operators are written in between the operands.
For example, to add 3 and 4, we write

3 + 4.

Robb T. Koether (Hampden-Sydney College) Stacks and their Applications Fri, Mar 16, 2018 20 / 38

Postfix Expressions

In a postfix expression, the operator is written after the operands.
For example, to add 3 and 4, we write

3 4 + .

The infix expression 2 ∗ 3 + 4 ∗ 5 would be written as

2 3 ∗ 4 5 ∗+

in postfix notation.

Robb T. Koether (Hampden-Sydney College) Stacks and their Applications Fri, Mar 16, 2018 21 / 38

Prefix Expressions

In a prefix expression, the operator is written before the operands.
For example, to add 3 and 4, we write

+ 3 4.

The infix expression 2 ∗ 3 + 4 ∗ 5 would be written as

+ ∗ 2 3 ∗ 4 5

in prefix notation.

Robb T. Koether (Hampden-Sydney College) Stacks and their Applications Fri, Mar 16, 2018 22 / 38

Outline

1 Stacks

2 The Stack Interface

3 Stack Applications
Function Calls
Infix, Postfix, and Prefix Notation
Infix Expression Evaluation
Postfix Expressions

4 Assignment

Robb T. Koether (Hampden-Sydney College) Stacks and their Applications Fri, Mar 16, 2018 23 / 38

Fully Parenthesized Infix Expressions

With infix expressions, the operations are not necessarily
performed from left to right.

Infix expressions may require parentheses to specify the order of
operation.
Precedence and associativity rules allow us to omit some of the
parentheses.
A fully parenthesized expression requires no precedence or
associativity rules.
In a fully parenthesized expression, there is a pair of parentheses
for every operator.

Robb T. Koether (Hampden-Sydney College) Stacks and their Applications Fri, Mar 16, 2018 24 / 38

Fully Parenthesized Infix Expressions

With infix expressions, the operations are not necessarily
performed from left to right.
Infix expressions may require parentheses to specify the order of
operation.

Precedence and associativity rules allow us to omit some of the
parentheses.
A fully parenthesized expression requires no precedence or
associativity rules.
In a fully parenthesized expression, there is a pair of parentheses
for every operator.

Robb T. Koether (Hampden-Sydney College) Stacks and their Applications Fri, Mar 16, 2018 24 / 38

Fully Parenthesized Infix Expressions

With infix expressions, the operations are not necessarily
performed from left to right.
Infix expressions may require parentheses to specify the order of
operation.
Precedence and associativity rules allow us to omit some of the
parentheses.

A fully parenthesized expression requires no precedence or
associativity rules.
In a fully parenthesized expression, there is a pair of parentheses
for every operator.

Robb T. Koether (Hampden-Sydney College) Stacks and their Applications Fri, Mar 16, 2018 24 / 38

Fully Parenthesized Infix Expressions

With infix expressions, the operations are not necessarily
performed from left to right.
Infix expressions may require parentheses to specify the order of
operation.
Precedence and associativity rules allow us to omit some of the
parentheses.
A fully parenthesized expression requires no precedence or
associativity rules.

In a fully parenthesized expression, there is a pair of parentheses
for every operator.

Robb T. Koether (Hampden-Sydney College) Stacks and their Applications Fri, Mar 16, 2018 24 / 38

Fully Parenthesized Infix Expressions

With infix expressions, the operations are not necessarily
performed from left to right.
Infix expressions may require parentheses to specify the order of
operation.
Precedence and associativity rules allow us to omit some of the
parentheses.
A fully parenthesized expression requires no precedence or
associativity rules.
In a fully parenthesized expression, there is a pair of parentheses
for every operator.

Robb T. Koether (Hampden-Sydney College) Stacks and their Applications Fri, Mar 16, 2018 24 / 38

Examples

The expression 1 + 2 ∗ 3 would be fully parenthesized as

(1 + (2 ∗ 3)).

The expression 2 ∗ 3 + 4/5 − 6 would be fully parenthesized as

(((2 ∗ 3) + (4/5))− 6).

Robb T. Koether (Hampden-Sydney College) Stacks and their Applications Fri, Mar 16, 2018 25 / 38

Infix Expression Evaluation

We may use a pair of stacks to evaluate a fully parenthesized infix
expression.
The expression contains four types of token:

Left parenthesis (
Right parenthesis)
Number, e.g., 123
Operator +, −, ∗, /

Robb T. Koether (Hampden-Sydney College) Stacks and their Applications Fri, Mar 16, 2018 26 / 38

Infix Expression Evaluation

To evaluate the expression we need a stack of numbers and a
stack of operators.
Read the tokens from left to right and process them as follows:

Token Action
Left parenthesis No action
Number Push the number onto the number stack
Operator Push the operator onto the operator stack

Right Parenthesis

1. Pop two numbers off the number stack
2. Pop one operator off the operator stack
3. Perform the operation on the numbers
4. Push the result onto the number stack

Robb T. Koether (Hampden-Sydney College) Stacks and their Applications Fri, Mar 16, 2018 27 / 38

Example

Use the algorithm to evaluate the expression

(((2 ∗ 5) + (6/3))− 8)

Robb T. Koether (Hampden-Sydney College) Stacks and their Applications Fri, Mar 16, 2018 28 / 38

Example

Token Number Stack Operator Stack

(
(
(
2 2
∗ 2 ∗
5 2 5 ∗
) 10
+ 10 +
(10 +
6 10 6 +
/ 10 6 + /
3 10 6 3 + /
) 10 2 +
) 12
− 12 −
8 12 8 −
) 4

Begin with an empty stack

captionRobb T. Koether (Hampden-Sydney College) Stacks and their Applications Fri, Mar 16, 2018 29 / 38

Example

Token Number Stack Operator Stack
(

(
(
2 2
∗ 2 ∗
5 2 5 ∗
) 10
+ 10 +
(10 +
6 10 6 +
/ 10 6 + /
3 10 6 3 + /
) 10 2 +
) 12
− 12 −
8 12 8 −
) 4

(((2 ∗ 5) + (6/3))− 8)

captionRobb T. Koether (Hampden-Sydney College) Stacks and their Applications Fri, Mar 16, 2018 29 / 38

Example

Token Number Stack Operator Stack
(
(

(
2 2
∗ 2 ∗
5 2 5 ∗
) 10
+ 10 +
(10 +
6 10 6 +
/ 10 6 + /
3 10 6 3 + /
) 10 2 +
) 12
− 12 −
8 12 8 −
) 4

(((2 ∗ 5) + (6/3))− 8)

captionRobb T. Koether (Hampden-Sydney College) Stacks and their Applications Fri, Mar 16, 2018 29 / 38

Example

Token Number Stack Operator Stack
(
(
(

2 2
∗ 2 ∗
5 2 5 ∗
) 10
+ 10 +
(10 +
6 10 6 +
/ 10 6 + /
3 10 6 3 + /
) 10 2 +
) 12
− 12 −
8 12 8 −
) 4

(((2 ∗ 5) + (6/3))− 8)

captionRobb T. Koether (Hampden-Sydney College) Stacks and their Applications Fri, Mar 16, 2018 29 / 38

Example

Token Number Stack Operator Stack
(
(
(
2 2

∗ 2 ∗
5 2 5 ∗
) 10
+ 10 +
(10 +
6 10 6 +
/ 10 6 + /
3 10 6 3 + /
) 10 2 +
) 12
− 12 −
8 12 8 −
) 4

(((2 ∗ 5) + (6/3))− 8)

captionRobb T. Koether (Hampden-Sydney College) Stacks and their Applications Fri, Mar 16, 2018 29 / 38

Example

Token Number Stack Operator Stack
(
(
(
2 2
∗ 2 ∗

5 2 5 ∗
) 10
+ 10 +
(10 +
6 10 6 +
/ 10 6 + /
3 10 6 3 + /
) 10 2 +
) 12
− 12 −
8 12 8 −
) 4

(((2 ∗ 5) + (6/3))− 8)

captionRobb T. Koether (Hampden-Sydney College) Stacks and their Applications Fri, Mar 16, 2018 29 / 38

Example

Token Number Stack Operator Stack
(
(
(
2 2
∗ 2 ∗
5 2 5 ∗

) 10
+ 10 +
(10 +
6 10 6 +
/ 10 6 + /
3 10 6 3 + /
) 10 2 +
) 12
− 12 −
8 12 8 −
) 4

(((2 ∗ 5) + (6/3))− 8)

captionRobb T. Koether (Hampden-Sydney College) Stacks and their Applications Fri, Mar 16, 2018 29 / 38

Example

Token Number Stack Operator Stack
(
(
(
2 2
∗ 2 ∗
5 2 5 ∗
) 10

+ 10 +
(10 +
6 10 6 +
/ 10 6 + /
3 10 6 3 + /
) 10 2 +
) 12
− 12 −
8 12 8 −
) 4

(((2 ∗ 5) + (6/3))− 8)

captionRobb T. Koether (Hampden-Sydney College) Stacks and their Applications Fri, Mar 16, 2018 29 / 38

Example

Token Number Stack Operator Stack
(
(
(
2 2
∗ 2 ∗
5 2 5 ∗
) 10
+ 10 +

(10 +
6 10 6 +
/ 10 6 + /
3 10 6 3 + /
) 10 2 +
) 12
− 12 −
8 12 8 −
) 4

(((2 ∗ 5) + (6/3))− 8)

captionRobb T. Koether (Hampden-Sydney College) Stacks and their Applications Fri, Mar 16, 2018 29 / 38

Example

Token Number Stack Operator Stack
(
(
(
2 2
∗ 2 ∗
5 2 5 ∗
) 10
+ 10 +
(10 +

6 10 6 +
/ 10 6 + /
3 10 6 3 + /
) 10 2 +
) 12
− 12 −
8 12 8 −
) 4

(((2 ∗ 5) + (6/3))− 8)

captionRobb T. Koether (Hampden-Sydney College) Stacks and their Applications Fri, Mar 16, 2018 29 / 38

Example

Token Number Stack Operator Stack
(
(
(
2 2
∗ 2 ∗
5 2 5 ∗
) 10
+ 10 +
(10 +
6 10 6 +

/ 10 6 + /
3 10 6 3 + /
) 10 2 +
) 12
− 12 −
8 12 8 −
) 4

(((2 ∗ 5) + (6/3))− 8)

captionRobb T. Koether (Hampden-Sydney College) Stacks and their Applications Fri, Mar 16, 2018 29 / 38

Example

Token Number Stack Operator Stack
(
(
(
2 2
∗ 2 ∗
5 2 5 ∗
) 10
+ 10 +
(10 +
6 10 6 +
/ 10 6 + /

3 10 6 3 + /
) 10 2 +
) 12
− 12 −
8 12 8 −
) 4

(((2 ∗ 5) + (6/3))− 8)

captionRobb T. Koether (Hampden-Sydney College) Stacks and their Applications Fri, Mar 16, 2018 29 / 38

Example

Token Number Stack Operator Stack
(
(
(
2 2
∗ 2 ∗
5 2 5 ∗
) 10
+ 10 +
(10 +
6 10 6 +
/ 10 6 + /
3 10 6 3 + /

) 10 2 +
) 12
− 12 −
8 12 8 −
) 4

(((2 ∗ 5) + (6/3))− 8)

captionRobb T. Koether (Hampden-Sydney College) Stacks and their Applications Fri, Mar 16, 2018 29 / 38

Example

Token Number Stack Operator Stack
(
(
(
2 2
∗ 2 ∗
5 2 5 ∗
) 10
+ 10 +
(10 +
6 10 6 +
/ 10 6 + /
3 10 6 3 + /
) 10 2 +

) 12
− 12 −
8 12 8 −
) 4

(((2 ∗ 5) + (6/3))− 8)

captionRobb T. Koether (Hampden-Sydney College) Stacks and their Applications Fri, Mar 16, 2018 29 / 38

Example

Token Number Stack Operator Stack
(
(
(
2 2
∗ 2 ∗
5 2 5 ∗
) 10
+ 10 +
(10 +
6 10 6 +
/ 10 6 + /
3 10 6 3 + /
) 10 2 +
) 12

− 12 −
8 12 8 −
) 4

(((2 ∗ 5) + (6/3))− 8)

captionRobb T. Koether (Hampden-Sydney College) Stacks and their Applications Fri, Mar 16, 2018 29 / 38

Example

Token Number Stack Operator Stack
(
(
(
2 2
∗ 2 ∗
5 2 5 ∗
) 10
+ 10 +
(10 +
6 10 6 +
/ 10 6 + /
3 10 6 3 + /
) 10 2 +
) 12
− 12 −

8 12 8 −
) 4

(((2 ∗ 5) + (6/3))− 8)

captionRobb T. Koether (Hampden-Sydney College) Stacks and their Applications Fri, Mar 16, 2018 29 / 38

Example

Token Number Stack Operator Stack
(
(
(
2 2
∗ 2 ∗
5 2 5 ∗
) 10
+ 10 +
(10 +
6 10 6 +
/ 10 6 + /
3 10 6 3 + /
) 10 2 +
) 12
− 12 −
8 12 8 −

) 4

(((2 ∗ 5) + (6/3))− 8)

captionRobb T. Koether (Hampden-Sydney College) Stacks and their Applications Fri, Mar 16, 2018 29 / 38

Example

Token Number Stack Operator Stack
(
(
(
2 2
∗ 2 ∗
5 2 5 ∗
) 10
+ 10 +
(10 +
6 10 6 +
/ 10 6 + /
3 10 6 3 + /
) 10 2 +
) 12
− 12 −
8 12 8 −
) 4

(((2 ∗ 5) + (6/3))− 8)

captionRobb T. Koether (Hampden-Sydney College) Stacks and their Applications Fri, Mar 16, 2018 29 / 38

Infix Expression Evaluation

Run the program InfixEvalFullParen.cpp.

Robb T. Koether (Hampden-Sydney College) Stacks and their Applications Fri, Mar 16, 2018 30 / 38

Outline

1 Stacks

2 The Stack Interface

3 Stack Applications
Function Calls
Infix, Postfix, and Prefix Notation
Infix Expression Evaluation
Postfix Expressions

4 Assignment

Robb T. Koether (Hampden-Sydney College) Stacks and their Applications Fri, Mar 16, 2018 31 / 38

Postfix Expression Evaluation

Example (Postfix Expressions)
Expression: 3 4 + 5 6 + ∗.
Left operand of ∗ is 3 4 +.
Right operand of ∗ is 5 6 +.

In postfix expressions, parentheses are never needed!

Robb T. Koether (Hampden-Sydney College) Stacks and their Applications Fri, Mar 16, 2018 32 / 38

Postfix Expression Evaluation

To evaluate a postfix expression we need a stack of numbers.
Read the tokens from left to right and process them as follows:

Token Action
Number Push the number onto the number stack

Operator

1. Pop two numbers off the number stack
2. Pop one operator off the operator stack
3. Perform the operation on the numbers
4. Push the result onto the number stack

Robb T. Koether (Hampden-Sydney College) Stacks and their Applications Fri, Mar 16, 2018 33 / 38

Postfix Expression Evaluation

Example (Postfix Expressions)
The fully parenthesized infix expression

(((2 ∗ 5) + (6/3))− 8)

can be written as
2 ∗ 5 + 6/3 − 8

As a postfix expression, it is 2 5 ∗ 6 3 / + 8 −

Robb T. Koether (Hampden-Sydney College) Stacks and their Applications Fri, Mar 16, 2018 34 / 38

Example

Token Number Stack
2 2

5 2 5
∗ 10
6 10 6
3 10 6 3
/ 10 2
+ 12
8 12 8
− 4

2 5 ∗ 6 3 / + 8 −

Robb T. Koether (Hampden-Sydney College) Stacks and their Applications Fri, Mar 16, 2018 35 / 38

Example

Token Number Stack
2 2
5 2 5

∗ 10
6 10 6
3 10 6 3
/ 10 2
+ 12
8 12 8
− 4

2 5 ∗ 6 3 / + 8 −

Robb T. Koether (Hampden-Sydney College) Stacks and their Applications Fri, Mar 16, 2018 35 / 38

Example

Token Number Stack
2 2
5 2 5
∗ 10

6 10 6
3 10 6 3
/ 10 2
+ 12
8 12 8
− 4

2 5 ∗ 6 3 / + 8 −

Robb T. Koether (Hampden-Sydney College) Stacks and their Applications Fri, Mar 16, 2018 35 / 38

Example

Token Number Stack
2 2
5 2 5
∗ 10
6 10 6

3 10 6 3
/ 10 2
+ 12
8 12 8
− 4

2 5 ∗ 6 3 / + 8 −

Robb T. Koether (Hampden-Sydney College) Stacks and their Applications Fri, Mar 16, 2018 35 / 38

Example

Token Number Stack
2 2
5 2 5
∗ 10
6 10 6
3 10 6 3

/ 10 2
+ 12
8 12 8
− 4

2 5 ∗ 6 3 / + 8 −

Robb T. Koether (Hampden-Sydney College) Stacks and their Applications Fri, Mar 16, 2018 35 / 38

Example

Token Number Stack
2 2
5 2 5
∗ 10
6 10 6
3 10 6 3
/ 10 2

+ 12
8 12 8
− 4

2 5 ∗ 6 3 / + 8 −

Robb T. Koether (Hampden-Sydney College) Stacks and their Applications Fri, Mar 16, 2018 35 / 38

Example

Token Number Stack
2 2
5 2 5
∗ 10
6 10 6
3 10 6 3
/ 10 2
+ 12

8 12 8
− 4

2 5 ∗ 6 3 / + 8 −

Robb T. Koether (Hampden-Sydney College) Stacks and their Applications Fri, Mar 16, 2018 35 / 38

Example

Token Number Stack
2 2
5 2 5
∗ 10
6 10 6
3 10 6 3
/ 10 2
+ 12
8 12 8

− 4

2 5 ∗ 6 3 / + 8 −

Robb T. Koether (Hampden-Sydney College) Stacks and their Applications Fri, Mar 16, 2018 35 / 38

Example

Token Number Stack
2 2
5 2 5
∗ 10
6 10 6
3 10 6 3
/ 10 2
+ 12
8 12 8
− 4

2 5 ∗ 6 3 / + 8 −

Robb T. Koether (Hampden-Sydney College) Stacks and their Applications Fri, Mar 16, 2018 35 / 38

Postfix Expression Evaluation

Run the program PostfixEvaluator.cpp.

Robb T. Koether (Hampden-Sydney College) Stacks and their Applications Fri, Mar 16, 2018 36 / 38

Outline

1 Stacks

2 The Stack Interface

3 Stack Applications
Function Calls
Infix, Postfix, and Prefix Notation
Infix Expression Evaluation
Postfix Expressions

4 Assignment

Robb T. Koether (Hampden-Sydney College) Stacks and their Applications Fri, Mar 16, 2018 37 / 38

Assignment

Assignment
Read Sections 18.1 - 18.2, 18.7 - 18.8.

Robb T. Koether (Hampden-Sydney College) Stacks and their Applications Fri, Mar 16, 2018 38 / 38

	Stacks
	The Stack Interface
	Stack Applications
	Function Calls
	Infix, Postfix, and Prefix Notation
	Infix Expression Evaluation
	Postfix Expressions

	Assignment

